Nature of Metal-Olefin Bond in Neutral $\eta^3\text{-Allyl(olefin)platinum(II)}\quad\text{Complexes.}\quad\text{In-plane}$ Olefin Coordination and Stability Trend Unusually Weakly Dependent on Electronic Effect of Olefin-substituent

Hideo KUROSAWA, * Hiroaki OHNISHI, Kunio MIKI, Nobutami KASAI, *

Kazuyuki TATSUMI, † and Akira NAKAMURA†

Department of Applied Chemistry, Osaka University, Suita 565

†Department of Macromolecular Science, Osaka University, Toyonaka 560

Relative olefin coordination ability in $Pt(\eta^3-CH_2CMeCH_2)-(CH_2=CHC_6H_4Y)(C_6F_5)(2)$ was determined to show the stability trend unusually weakly dependent on the electronic property of the substituent Y. The crystal structure of the styrene complex 2 (Y= H) revealed the C=C bond oriented parallel to the coordination plane. The nature of Pt-olefin bond in 2 has been discussed in terms of these stability and structural trends.

The studies on the cationic olefin complexes of the type $[Pt(\eta^3-CH_2CMeCH_2)-(olefin)(PPh_3)]^+(1)$ have revealed^{1,2)} that these are somewhat unique in terms of the nature of metal-olefin bond when compared to the classic, more ordinary olefin complexes of Pt(II) such as Zeise's salt. That is, the former class complexes contain the C=C bond oriented parallel to the coordination plane (in-plane geometry) in contrast to that oriented perpendicular (upright geometry) in the latter class,¹⁾ while the metal atom in both classes is very electrophilic in nature toward the coordinated olefin ligand.^{2,3)} In order to gain more insight into the nature of metal-olefin bond in complexes containing the η^3 -allyl ligand, we undertook synthetic, stability and structural studies of neutral analogs, Pt(η^3 -CH₂CMeCH₂)(CH₂=CHC₆H₄Y)(C₆F₅)(2).

The substituted styrene complexes 2b and 2c were prepared 4) from [Pt(η^3 -CH₂CMeCH₂)Cl]₂ and C₆F₅Li in the presence of appropriate styrenes, in the manner similar to that described for the unsubstituted analog $2a.^{5}$) The other

$$C_6F_5$$

Me — Pt

 $CH_2 = CHC_6H_4Y$

2

(Y= H a; 3-NO₂ b; 4-Cl c; 4-Me d; 4-OMe e)

Table	e 1. Equilib	rium Constants	of	Eq.	1 a	-
_	Y=	K				-
	Н	1.0				
	3-NO ₂	0.59 ± 0.10				
	4-Cl	0.89 ± 0.09				
	4-Me	1.3 ± 0.2				
	4-OMe	1.4 ± 0.2				
a)	In CDCl ₂ at	25 °C.				

derivatives 2d and 2e were generated in solutions by quite a slow ligand exchange (see later) between 2b and the appropriate olefin, and characterized by ¹H NMR spectra. The relative stability of 2a-e, as expressed by the equilibrium constant of Eq. 1, was determined by ¹H NMR spectroscopy in the manner analogous to that for $1.^{2a}$) The K values thus determined are summarized in Table 1.

$$Pt(\eta^{3}-C_{4}H_{7})(CH_{2}=CHC_{6}H_{5})(C_{6}F_{5}) + CH_{2}=CHC_{6}H_{4}Y \xrightarrow{K}$$

$$Pt(\eta^{3}-C_{4}H_{7})(CH_{2}=CHC_{6}H_{4}Y)(C_{6}F_{5}) + CH_{2}=CHC_{6}H_{5}$$
(1)

Of particular note in Table 1 is that the K values do not deviate much from unity (Hammett β = -0.38), which is quite different from the trend in 1 (β = -1.32)^{2a}) and trans-PtCl₂(CH₂=CHC₆H₄Y)(pyridine) (Hammett β += -0.82)^{3a}) showing the strongly electrophilic nature of the platinum atom to the olefin. Such a novel stability trend as observed in 2 showing very small sensitivity to the electronic effect of the olefin-substituent has been found before only in the closely related palladium complexes, Pd(η ³-CH₂CMeCH₂)(CH₂=CHC₆H₄Y)(C₆HCl₄-2,3,5,6) (β = -0.25) which, however, were characterized only in solutions at low temperatures without isolation.⁵)

The structure of 2a was determined by X-ray crystallography. Crystal data: $C_{18}H_{15}F_{5}Pt$, F.W.= 521.40, triclinic, space group $P\overline{1}$, a= 6.292(2) Å, b= 11.874(4) Å, c= 12.736(4) Å, α = 117.39(2)°, β = 82.07(3)°, γ = 97.50(4)°, V= 834.3(5) Å³, Z= 2, D_{c} = 2.075 g cm⁻³, R= 0.074 for 3410 reflections ($|F_{o}| > 3d(|F_{o}|)$). The molecular structure is shown in Figure 1 and the relevant bond lengths and angles in Table 2.

It seems of interest to note that the C=C bond in 2a makes an angle of 10.2° with the coordination plane defined by Pt, CAL, and C(21). This feature is the same as that in the cationic complex 1 (olefin= $CH_2=CHC_6H_5$). However, the Pt-

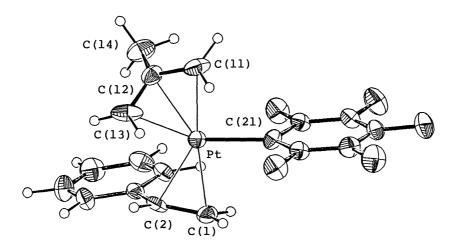


Fig. 1. Molecular Structure of 2a.

C(olefin) bond lengths in 2a are considerably shorter than those in the cationic complex (2.203(12) and 2.301(12) Å), ^{1a)} suggesting the stronger Pt-olefin bond strength in 2 than in 1. Consistent with this is the observation that the olefin ligand exchange in 2 (e.g. Eq. 1) is very slow (e.g. half-life of ca. 10 min for the equilibrium stage to be attained from 2a (0.19 M) and 3-nitrostyrene (0.48 M) at 25 °C), while the corresponding process in 1 occurred almost instantaneously under the similar conditions.

Preliminary extended Hückel MO calculations on a model, $Pt(\eta^3-CH_2CHCH_2)-(CH_2=CH_2)(CH_3)$ indicated that the in-plane C=C geometry is electronically favored⁷⁾ over the upright one, as was the case in the cationic model, $[Pt(\eta^3-CH_2CHCH_2)-(CH_2=CH_2)(PH_3)]^{+.8}$ This is

attributed primarily to the larger π back bonding in the in-plane than the upright geometries, since the $d\pi$ orbital of the fragment, $Pt(\eta^3-CH_2CHCH_2)-(CH_3)$ suited for π interaction⁹⁾ with π^* of the in-plane oriented ethylene lies ca. 0.6 eV higher than that for the π interaction with the upright ethylene. Another MO aspect shown below is also consistent with a notion

Table 2. Relevant Bond Lengths (A) and

	Angles (°) o	f 2a					
Pt-C(1)	2.17(3)	Pt-C(2)	2.23(2)				
Pt-C(11)	2.12(3)	Pt-C(12)	2.15(2)				
Pt-C(13)	2.10(3)	Pt-C(21)	2.05(2)				
C(1)-C(2)	1.41(3)	C(11)-C(12)	1.42(4)				
C(12)-C(13)	1.31(4)	C(12)-C(14)	1.50(4)				
CET-Pt-CAL	134.8	CET-Pt-C(21) 101.0				
CAL-Pt-C(21) 124.1							

CET: the midpoint of the C(1)-C(2) bond.

CAL: the center of gravity of the allyl triangle.

1626 Chemistry Letters, 1987

implicated by the present experimental results that metal-to-olefin π back bonding in $\mathbf 2$ is larger than in $\mathbf 1$ and Zeise's salt's class (electrophilic metal center), but smaller than in the zerovalent complexes of the type, $M(\text{olefin})L_2$ where M=Ni, Pd, Pt, and $L=PR_3$ or $L_2=$ bipy (nucleophilic metal center). That is, the relevant $d\pi$ orbital of the $Pt(\eta)^3-CH_2CHCH_2)(CH_3)$ fragment lies higher in energy than those of the fragments, $[PtCl_3]^-$ (by ca. 0.5 eV) and $[Pt(\eta)^3-CH_2CHCH_2)(PH_3)]^+$ (0.25 eV), but lower than that of the $Pt(PH_3)_2$ fragment (0.3 eV).

Partial support of this work by Grant-in-aids for Special Project Research, Ministry of Education, Science and Culture (61225016, 61125007) is gratefully acknowledged.

References

- a) K. Miki, Y. Kai, N. Kasai, and H. Kurosawa, J. Am. Chem. Soc., <u>105</u>, 2482 (1983);
 b) K. Miki, K. Yamatoya, N. Kasai, H. Kurosawa, M. Emoto, and A. Urabe, J. Chem. Soc., Chem. Commun., <u>1984</u>, 1520.
- 2) a) H. Kurosawa and N. Asada, J. Organomet. Chem., <u>217</u>, 259 (1981); b) H. Kurosawa and N. Asada, Organometallics, <u>2</u>, 251 (1983).
- a) H. Kurosawa, A. Urabe, and M. Emoto, J. Chem. Soc., Dalton Trans., 1986,
 891; b) D. G. Cooper and J. Powell, Inorg. Chem., 15, 1959 (1976); c) S. C.
 Nyburg, K. Simpson, and W. Wong-Ng, J. Chem. Soc., Dalton Trans., 1976, 1865.
- 4) The complexes ${\bf 2b}$ and ${\bf 2c}$ were characterized by elemental analyses and $^{1}{\rm H}$ NMR and IR spectral data.
- 5) H. Kurosawa, M. Emoto, H. Ohnishi, K. Miki, N. Kasai, K. Tatsumi, and A. Nakamura, submitted to J. Am. Chem. Soc.
- 6) Computations were done on an ACOS 850 computer, at the Crystallographic Research Center, Institute for Protein Research, Osaka University.
- 7) The in-plane geometry gave the larger Pt-C(olefin) overlap populations (Pt-C(1)= 0.257, Pt-C(2)= 0.240; Pt-C= 2.20 Å) than the upright one (0.230, 0.228), even though the total energy was almost the same in the two geometries possibly due to overestimation of steric factors in the in-plane geometry.
- 8) K. Yamatoya, K. Miki, N. Kasai, H. Kurosawa, K. Tatsumi, and A. Nakamura, Abstr. 32nd Symp. Organometal. Chem. Jpn., Osaka, 1985, p. 118.
- 9) Notice, however, that considerable orbital mixing occurs upon complex formation due to low molecular symmetry.
- T. Yamamoto, A. Yamamoto, and S. Ikeda, J. Am. Chem. Soc., <u>93</u>, 3360 (1971);
 C. A. Tolman, ibid., <u>96</u>, 2780 (1974); F. Ozawa, T. Ito, and A. Yamamoto,
 J. Organomet. Chem., <u>168</u>, 375 (1979); S. Cenini, R. Ugo, and G. La Monica,
 J. Chem. Soc., A, <u>1971</u>, 409.

(Received May 21, 1987)